Interaction and Quantum Decoherence in Disordered Conductors
نویسندگان
چکیده
Wepresent a nonperturbative approach which allows to evaluate the weak localization correction to the conductivity of disordered conductors in the presence of interactions. The effect of the electron-electron interaction on the magnetoconductance is described by the function A(t) exp(−f(t)). The dephasing time is determined only by f(t), and this time remains finite down to T = 0 due to the electron-electron interactions. In order to establish the relation between our nonperturbative analysis and the perturbative results the effect of interaction on the preexponent A(t) should be taken into account. The dephasing time cannot be unambiguously determined from a perturbative calculation.
منابع مشابه
Of Decoherent Electrons and Disordered Conductors
Electron decoherence at low temperatures is important for the proper understanding of the metallic ground state, usually studied within the framework of Fermi liquid theory. It is also fundamental to various insulating transitions in low-dimensional disordered conductors, such as Anderson localization, which similar to the Fermi liquid theory relies on a vanishing decoherence rate at zero tempe...
متن کاملDecoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملInfluence Functional for Decoherence of Interacting Electrons in Disordered Conductors
In this review, we rederive the controversial influence functional approach of Golubev and Zaikin (GZ) for interacting electrons in disordered metals in a way that allows us to show its equivalence, before disorder averaging, to diagrammatic Keldysh perturbation theory. By representing a certain Pauli factor (δ̃ − 2ρ̃0) occuring in GZ’s effective action in the frequency domain (instead of the tim...
متن کاملشبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست
In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...
متن کاملElectron–phonon interaction and electronic decoherence in molecular conductors
We perform a brief but critical review of the Landauer picture of transport that clarifies how decoherence appears in this approach. On this basis, we present different models that allow the study of the coherent and decoherent effects of the interaction with the environment in the electronic transport. These models are particularly well suited for the analysis of transport in molecular wires. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999